OR $x = k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta}$

Dimensional Analysis Exam Questions (From OCR 4763)

	<u>Dimensional Analysis Exam C</u>	<u> uestions (</u>	Fre	om OCR 4763)
Q1, (Ja	an 2006, Q1a)			
(a)(i	MLT^{-2}	B1	1	Allow kg ms ⁻²
(ii)	$(T) = (MLT^{-2})^{\alpha} (L)^{\beta} (ML^{-1})^{\gamma}$ Provent of M:	B1 M1		For ML ⁻¹
	Powers of M: $\alpha + \gamma = 0$ of L: $\alpha + \beta - \gamma = 0$ of T: $-2\alpha = 1$	M2		For three equations Give M1 for one equation
	$\alpha = -\frac{1}{2}$, $\beta = 1$, $\gamma = \frac{1}{2}$	A2	6	Give A1 for one correct
(iii)	$kF_1^{\alpha}l_1^{\beta}\sigma^{\gamma} = kF_2^{\alpha}l_2^{\beta}\sigma^{\gamma}$	M1		
	$F_1^{-\frac{1}{2}} l_1 = F_2^{-\frac{1}{2}} l_2$	A 1		Equation relating F_1 , F_2 , l_1 , l_2
	OR $F^{\alpha}l^{\beta}$ is constant M1 F is proportional to l^2 A1			or equivalent
	$F_2 = 90 \times \frac{2.0^2}{1.2^2}$ = 250 (N)	M1 A1	4	
O2. (Ju	। un 2006, Q1a)	ļ	I	
	[Force] = M L T ⁻² [Power] = [Force] × [Distance] ÷ [Time]	B1		or [Energy]= ML^2T^{-2}
	= [Force] $\times LT^{-1}$			or [Energy] ×T ⁻¹
	$= M L^2 T^{-3}$	A1	3	
(ii)	[RHS] = $\frac{(L)^3 (LT^{-1})^2 (ML^{-3})}{ML^2 T^{-3}}$	B1B1		For $(LT^{-1})^2$ and (ML^{-3})
	$ML^2 T^{-3}$ $= T$	M1 A1		Simplifying dimensions of RHS
	[LHS] = L so equation is not consistent	E1	5	With all working correct (cao) SR ' $L = \frac{28}{9}\pi$ T, so inconsistent' can earn B1B1M1A1E0
(iii)	[RHS] needs to be multiplied by LT^{-1} which are the dimensions of u	M1 A1		
	Correct formula is $x = \frac{28 \pi r^3 u^3 \rho}{9P}$	A1 cao	3	RHS must appear correctly

M1 A1

Α1

Equating powers of one dimension

Q3, (Jun 2007, Q1a)

Q3, (Ji	<u>un 2007, Q1a)</u>			
(a)(i)	[Velocity] = LT^{-1}	B1		(Deduct 1 mark if answers given as
	[Acceleration] = LT^{-2}	B1		ms^{-1} , ms^{-2} , $kg ms^{-2} etc$)
	[Force] = MLT^{-2}	B1		
	[Density] = $M L^{-3}$	В1		
	[Pressure] = $M L^{-1} T^{-2}$	В1		
			5	
(ii)	$[P] = ML^{-1}T^{-2}$			
	$\left[\frac{1}{2}\rho v^2\right] = (M L^{-3})(L T^{-1})^2$	M1		Finding dimensions of 2nd or 3rd
	$= M L^{-1} T^{-2}$	A1		term
	$[\rho g h] = (M L^{-3})(L T^{-2})(L) = M L^{-1} T^{-2}$	A1		
	All 3 terms have the same dimensions	E1		Allow e.g. 'Equation is
			4	dimensionally consistent'
				following correct work
	an 2007, Q1)	B1	- 1	Doduct 1 mark if anguara given
(i)	[Velocity] = LT^{-1}		- 1	Deduct 1 mark if answers given as
	[Acceleration] = LT^{-2}	B1		ms^{-1} , ms^{-2} , $kg ms^{-2}$
	[Force] = MLT^{-2}	B1	3	
····	2 2 2		3	
(ii)	$[G] = \frac{[F][r^2]}{[m_1][m_2]} = \frac{(M L T^{-2})(L^2)}{M^2}$	M1		
	$[m_1][m_2]$ M^2 = $M^{-1}I^3T^{-2}$			
	$= \mathbf{M} \cdot \mathbf{L}^{2} \mathbf{I}^{2}$	E1	2	
			2	
(iii)	$G = 6.67 \times 10^{-11} \times 0.4536 \times \frac{1}{(0.3048)^3}$	M1M1		For $\times 0.4536$ and $\times \frac{1}{(0.3048)^3}$
	(0.3048)		- 1	SC Give M1 for
	$=1.07\times10^{-9}$ ($1b^{-1}$ ft ³ s ⁻²)	A1		$6.67 \times 10^{-11} \times \frac{1}{0.4536} \times (0.3048)^3$
		AI	3	$(=4.16\times10^{-12})$
(iv)	a r-1 x 3 m-2 \ a p			
()	[RHS] = $\sqrt{\frac{(M^{-1} L^3 T^{-2})(M)}{L}}$	M1A1		
	$= \sqrt{L^2 T^{-2}} = L T^{-1}$			
	$=\sqrt{L}$ I $=L$ I which is the same as [LHS]			
	which is the same as [Line]	E1	3	
()	1 2 2 ~ 8 . "	144	3	
(v)	$T = (M^{-1} L^3 T^{-2})^{\alpha} M^{\beta} L^{\gamma}$ Decrease of M:	M1		
	Powers of M: $-\alpha + \beta = 0$ of L: $3\alpha + \gamma = 0$	M1		At least two equations
	of T: $-2\alpha = 1$	A1		Three correct equations
	2 2 1	M1		Obtaining at least one of
	$\alpha = -\frac{1}{2}$, $\beta = -\frac{1}{2}$, $\gamma = \frac{3}{2}$	A1		α, β, γ
			5	

Q5, (Jun 2009, Q3a)

Q3, (30	<u>11 2003, Q3a)</u>			I
	[Velocity] = LT^{-1}	B1		Deduct 1 mark for ms ⁻¹ etc
	[Force] = $M L T^{-2}$ [Density] = $M L^{-3}$	B1		
	[Density] = $M L^{-3}$	B1		
			3	
(ii)	$MLT^{-2} = (ML^{-3})^{\alpha} (LT^{-1})^{\beta} (L^{2})^{\gamma}$			
	$\alpha = 1$	B1		
	$\beta = 2$	B1		
	$\beta = 2$ $-3\alpha + \beta + 2\gamma = 1$ $\gamma = 1$	M1A1		(ft if equation involves
	7 – 1	A1	5	α, β and γ)
06 /1	2000 O4: i. l		9	
	n 2008, Q1i-iv)	B1		(Doduct 1 mark if kg, m, s are
(a)(i)				(Deduct 1 mark if kg, m, s are consistently used instead of M,
	[Acceleration] = LT ⁻²	B1		L, T)
	[Force] = MLT^{-2}	B1	3	
	2		3	
(ii)	$[\lambda] = \frac{[\text{Force}]}{[v^2]} = \frac{MLT^{-2}}{(LT^{-1})^2}$	M1		
	$= M L^{-1}$	A1 cac	,	
			2	
(iii)	$\left[\frac{U^{2}}{2g}\right] = \frac{(L T^{-1})^{2}}{L T^{-2}} = L$ $\left[\frac{\lambda U^{4}}{4mg^{2}}\right] = \frac{(M L^{-1})(L T^{-1})^{4}}{M (L T^{-2})^{2}}$	B1 cac)	(Condone constants left in)
	$\left[\begin{array}{c} \lambda U^4 \\ \end{array}\right] = \frac{(M L^{-1})(L T^{-1})^4}{(M L^{-1})(L T^{-1})^4}$			
	$\lfloor 4mg^2 \rfloor \qquad M(LT^{-2})^2$	M1		
	$= \frac{M L^3 T^{-4}}{M L^2 T^{-4}} = L$			
		A1 cac)	
	[H] = L; all 3 terms have the same dimensions	E1		Dependent on B1M1A1
	differisions		4	<u> </u>
(iv)	$(M L^{-1})^2 (L T^{-1})^{\alpha} M^{\beta} (L T^{-2})^{\gamma} = L$			
	$\beta = -2$	B1 cac		
	$-2 + \alpha + \gamma = 1$ $-\alpha - 2\gamma = 0$	M1		At least one equation in α , γ
	$-\alpha - 2\gamma = 0$	A1		One equation correct
	$\alpha = 6$	A1 cac	,	•
	$\gamma = -3$	A1 cac	I	
			5	

Q7, (Jun 2014, Q1a)

(i)	$[\rho] = ML^{-3}$	B1		
	$[E] = [\rho v^2] = (ML^{-3})(LT^{-1})^2$	M1	Obtaining dimensions of E	
	Dimensions of Young's modulus are ML ⁻¹ T ⁻²	A1		
		[3]		
(ii)	$E = \rho v^2 = 7800 \times 6100^2 = 2.90 \times 10^{11}$ (3 sf)	B1		
	Units are kg m ⁻¹ s ⁻²	В1	OR Nm ⁻² OR Pa	FT provided all powers are non-zero No FT if derived units involved
		[2]		
(iii)	$T^{-1} = L^{\alpha} (M L^{-1} T^{-2})^{\beta} (M L^{-3})^{\gamma}$			
	$\beta = \frac{1}{2}$	B1	CAO	
	$\gamma = -\frac{1}{2}$	B1	FT $\gamma = -\beta$	Provided non-zero
	$\alpha - \beta - 3\gamma = 0$	M1	Equation from powers of L	
	$\alpha = -1$	A 1	CAO	
		[4]		

Q8, (Jun 2015, Q1i-iv)

(i)	[Force] = MLT^{-2}	B1		
	[Work] = $M L^2 T^{-2}$	B1		
	[Power] = $M L^2 T^{-3}$	B1		
		[3]		Deduct one mark if kg, m, s used consistently for M, L, T
(ii)	$[\lambda] = \left[\frac{F}{v^2}\right] = \frac{MLT^{-2}}{(LT^{-1})^2}$	M1	Obtaining dimensions of λ	M0 if $P = \lambda U^3$ used
	$= M L^{-1}$	A1	FT [Force]×L ⁻² T ²	B2 (BOD) for correct answer with no working
		[2]	1.000	
(iii)	$[\lambda U^3] = (ML^{-1})(LT^{-1})^3 = ML^2T^{-3}$	M1	Obtaining dimensions of λU^3	Must be simplified
	Same as power, so dimensionally consistent	E1 [2]	Correctly shown	
(iv)	$T = M^{\alpha} (M L^{2} T^{-3})^{\beta} (M L^{-1})^{\gamma}$	3		
	$\beta = -\frac{1}{3}$	B1		
	$\alpha + \beta + \gamma = 0$, $2\beta - \gamma = 0$	M1	One equation correct (FT)	Equation from powers of M or L
	$\alpha + \beta + \gamma = 0$, $2\beta - \gamma = 0$ $\alpha = 1$, $\gamma = -\frac{2}{3}$	AlAl	CAO	If A0 give SC1 for non-zero values with $\gamma = 2\beta$ OR $\alpha + \beta + \gamma = 0$
		[4]		(SC1 will usually imply M1)

Q9, (Jun 2016, Q1ai)

(i)	Units of weight are MLT ⁻²	B1	
	$LT^{-1} = L^{\alpha} \left(MLT^{-2}\right)^{\beta} \left(ML^{-1}T^{-1}\right)^{\gamma}$	M1	
	Compare powers for at least one dimension $0 - R + W$	M1	
	$0 = \beta + \gamma$ $1 = \alpha + \beta - \gamma$ $-1 = -2\beta - \gamma$	A1 A1	One equation correct Another equation correct
	$\alpha = -1$, $\beta = 1$, $\gamma = -1$	A1	All correct
		[6]	

Q10, (Jun 2017, Q2a)

(i)	Dimensions of force: MLT ⁻²	B1		
	Dimensions of density: ML ⁻³	B1		
		[2]		
(ii)	$MLT^{-2} = (ML^{-3})^{\alpha} (LT^{-1})^{\beta} (L^{2})^{\gamma}$	M1 A1 ft	All parts present, dimensions of at least v or A correct	
	Compare powers for at least one dimension	M1		
	$1 = \alpha$			
	$1 = -3\alpha + \beta + 2\gamma$	A1 cao	At least two equations correct	
	$1 = -3\alpha + \beta + 2\gamma$ $-2 = -\beta$			
	$\alpha = 1, \beta = 2, \gamma = 1$	A1 cao	All correct	
		[5]		